
Overview
When developing an embedded application, system constraints such as memory limitations and time-critical code
requirements can play a crucial role in your programming approach. You can't afford the software implementation to
have any bottlenecks. This document outlines good programming practices that can be used to help optimize your
embedded application with LabVIEW 7.1 Embedded Edition. The techniques described are applicable for any
embedded target.

Memory Allocation

Avoid dynamic memory allocation. Dynamic memory allocation is very expensive in time-critical code. In LabVIEW
Embedded, dynamic memory allocation can occur when using the Build Array and Concatenate String functions.
Alternatively, the Build Array primitive can be replaced with a Replace Array Subset function in order to replace
elements in a preallocated array. The preallocated array should be created outside of the loop by using an array constant
or with the Initialize Array function. LabVIEW code is shown below to contrast the different implementations.

Optimizing LabVIEW Embedded
Applications

Document Version 2
© 2006 National Instruments Corporation. All rights reserved.

1

Data Placement

Avoid placing large constants inside loops. When a large constant is placed inside a loop, memory is allocated and the
array is initialized at the beginning of each iteration of the loop. This can be an expensive operation in time-critical
code. A better way to access the data place the array outside of the loop and wire it to through a loop tunnel, or to use a
global variable. Examples of the two recommended methods are shown below.

Optimizing LabVIEW Embedded
Applications

Document Version 2
© 2006 National Instruments Corporation. All rights reserved.

2

Optimizing LabVIEW Embedded
Applications

Document Version 2
© 2006 National Instruments Corporation. All rights reserved.

3

Use Global Variables instead of Local Variables. Every time a local variable is accessed extra code is executed to
synchronize it with the front panel. Code performance can be improved, in many cases, by using a global variable
instead of a local. The global has no extra front panel synchronization code and so executes slightly faster than a local.

Use shift registers instead of loop tunnels for large arrays. When passing a large array through a loop tunnel, the
original value must be copied into the array location at the beginning of each iteration, which can be expensive. The
shift register does not perform this copy operation, but make sure to wire in the left shift register to the right if you don’t

Optimizing LabVIEW Embedded
Applications

Document Version 2
© 2006 National Instruments Corporation. All rights reserved.

4

want the data values to change.

Numeric Conversion

Use integer operations instead of floating point operations. If your processor does not have a floating point unit,
converting to floating point to perform an operation and then converting back to an integer data type can be very
expensive. In the examples below, using a Quotient & Remainder function is faster than a normal Divide function,
and using a Logical Shift function is faster than a Scale by a Power of 2 function.

Optimizing LabVIEW Embedded
Applications

Document Version 2
© 2006 National Instruments Corporation. All rights reserved.

5

Optimizing LabVIEW Embedded
Applications

Document Version 2
© 2006 National Instruments Corporation. All rights reserved.

6

Avoid automatic numeric conversions. Another technique for improving code performance is to remove all implicit
type conversions (coercion dots). Use the Conversion functions to explicitly convert data types as this avoids a copy
operation and a data type determination.

Functions and Data Types to Avoid

Avoid Case Structures for simple decision making. For simple decision making in LabVIEW, it is often faster to use
the Select function rather than a Case structure. Since each case in a Case structure can contain it's own block diagram
there is significantly more overhead associated with this structure when compared with a Select function. However, it is
sometimes more optimal to use a case structure if one case executes a large amount of code and the other cases execute
very little code. The decision to use a Select function versus a Case structure should be made on a case by case basis.

Optimizing LabVIEW Embedded
Applications

Document Version 2
© 2006 National Instruments Corporation. All rights reserved.

7

Avoid In Range and Coerce in Time-Critical Code. The In Range and Coerce function has significant overhead
associated with it due to the special user configurable features and extra data type determination operations. This
function should be re-implemented with comparison and Select functions if it is used in time-critical code.

Optimizing LabVIEW Embedded
Applications

Document Version 2
© 2006 National Instruments Corporation. All rights reserved.

8

Avoid Clusters in Time-Critical Code. Clusters passed into subVIs will result in unnecessary data type information
being passed as well. In order to speed up your code, try not to use clusters in time-critical areas of your block diagram.

Optimizing LabVIEW Embedded
Applications

Document Version 2
© 2006 National Instruments Corporation. All rights reserved.

9

Using the Inline C Node

Often the best results can be obtained by using a hybrid of LabVIEW and C code. The Inline C Node and Call Library
Node allow the use of C code directly within your LabVIEW block diagram. See the Embedded Development Module
documentation (linked below) for more information on the use of the Inline C and Call Library Nodes.

Optimizing LabVIEW Embedded
Applications

Document Version 2
© 2006 National Instruments Corporation. All rights reserved.

10

The best cases for using C-based algorithms within your LabVIEW code are:

1) If you already have existing C algorithms that you’d like to reuse.

2) If there is a small numeric or array algorithm that can be coded more optimally in C.

Optimal Build Settings

The following build settings will usually give your code the fastest execution time:

Build Setting Purpose
Generate Serial Only = TRUE Increases performance in code with parallel operations.
Generate Debug Info = FALSE Removes calls to debug code.
Generate Guard Code = FALSE Removes extra protective code from math and array

routines.
Generate Integer Only = TRUE Improves performance on targets without a floating

point unit.
Use Stack Variables = TRUE Uses stack space rather than statically allocated

memory locations.
Generate C Function Calls = TRUE Generates more efficient code when calling subVIs,

although all inputs to all subVIs must be wired.

Conclusion

By following good embedded programming practices, you can better optimize your code to meet the constraints of your
embedded application. Implementing one or two these techniques may noticeably improve the performance of your
application, but the best approach is to incorporate a combination of all these techniques.

Refer to the links below for more information on LabVIEW 7.1 Embedded Edition and the LabVIEW Embedded
Development Module.

Related Links:

Product Manuals - LabVIEW Embedded Development Module Release Notes

Product Manuals - LabVIEW Embedded Development Module Porting Guide

Optimizing LabVIEW Embedded
Applications

Document Version 2
© 2006 National Instruments Corporation. All rights reserved.

11

http://digital.ni.com/manuals.nsf/websearch/08B115A35817D16986256FE90059AD5B
http://digital.ni.com/manuals.nsf/websearch/2EDCE5014BAA6CEF86257012005805AB

